2015 ACCA Calculus Competition

Multiple Choice

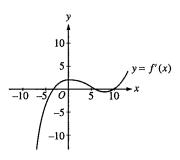
- 1. If f(0) = 4, f'(0) = 2, f'(3) = 1, f'(-5) = -3, g(0) = 3, and g'(0) = -5, find (fg)'(0)(a) -10 (b) 26 (c) -5 (d) -3 (e) -14
- 2. Let f be the function defined for all x > 0 by $f(x) = (\sqrt{x})^x$. Which of the following statements is **false**?
 - (a) $\lim_{x \to 0^+} f(x) = 1$
 - (b) $\lim_{x \to \infty} f(x) = \infty$
 - (c) $f(x) = x^{x/2}$ for all x > 0
 - (d) The derivative f'(x) is positive for all x > 0.
 - (e) The derivative f'(x) is increasing for all x > 0.
- 3. Let $x_1 = 1$ and $x_{n+1} = \sqrt{3 + 2x_n}$. If $\{x_n\}$ converges, then $\lim_{n \to \infty} x_n =$ (a) -1 (b) 0 (c) $\sqrt{5}$ (d) e (e) 3
- 4. Solve the differential equation $\frac{dx}{dt} = 1 t + x xt$ (a) $x(t) = C + te^t$
 - (b) $x(t) = 1 + Ce^{t/2}$
 - (c) $x(t) = 1 Ce^{t^2/2}$
 - (d) $x(t) = Ce^{t-t^2/2}$
 - (e) $x(t) = -1 + Ce^{t-t^2/2}$
- 5. If C is the square with verticies (0,0), (1,0), (1,1), and (0,1), oriented counterclockwise, find $\oint_C (3y \, dx + 4x \, dy)$ (a) 0 (b) 1 (c) 3 (d) 4 (e) 7

6. If
$$f(x) = \int_{1}^{x^{2}} \frac{1}{1+t^{3}} dt$$
 then $f'(2) =$
(a) $\frac{4}{65}$
(b) $\frac{1}{9}$
(c) $\ln\left(\frac{65}{2}\right)$
(d) $\ln\left(\frac{9}{2}\right)$
(e) 0.23

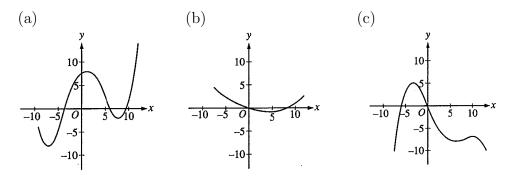
- 7. Find the volume of the solid of revolution obtained by rotating the region bounded by $y = x^2 + 4$ and $y = 12 x^2$ about the line y = -1
 - (a) 384π
 - (b) 128π
 - (c) 128
 - (d) 96π
 - (e) None of these

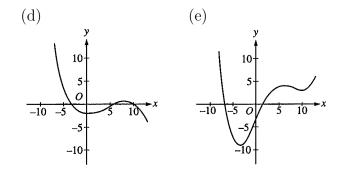
8. If
$$f(x) = \begin{cases} \sqrt{1-x^2} & \text{for } 0 \le x \le 1\\ x-1 & \text{for } 1 < x \le 2 \end{cases}$$
, then $\int_0^2 f(x) \, dx$ is
(a) $\frac{\pi}{2}$
(b) $\frac{\sqrt{2}}{2}$
(c) $\frac{1}{2} + \frac{\pi}{4}$
(d) $\frac{1}{2} + \frac{\pi}{2}$
(e) undefined

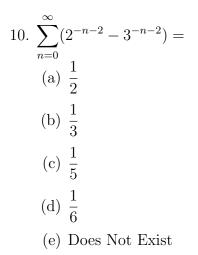
9. The graph of y = f'(x) is below



Which of the following could be the graph of y = f(x)?







11. Evaluate the improper integral $\int_{2}^{\infty} \frac{dy}{y^{2} + 2y - 3}$ (a) $\frac{5}{2}$ (b) $\frac{1}{\ln 4}$ (c) $\frac{5}{4}$ (d) $\frac{\ln 5}{4}$ (e) divergent

13. An ice cube melts uniformly at a rate of $2in^3/min$ without changing its shape. How fast is the surface area changing when the volume of the ice cube is $27in^3$?

(a)
$$\frac{1}{9}$$
in²/min
(b) $-\frac{8}{3}$ in²/min
(c) 1in²/min
(d) -4 in²/min
(e) None of these

- 14. Find the equation of the tangent plane to the surface z = e^{-x} sin y at x = 0 and y = π/2.
 (a) x + y = 1
 (b) x + z = 1
 - (c) x z = 1(d) y + z = 1
 - (e) y z = 1

15.
$$\int_{0}^{1} \int_{0}^{x} xy \, dy \, dx =$$

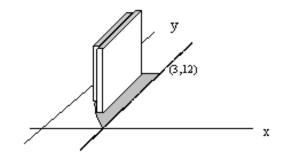
(a) 0 (b) $\frac{1}{8}$ (c) (d) 1 (e) 3

Short Answer

- 1. Find $\lim_{x \to 0} \frac{\sin 2x}{(1-x)\ln(1-x)}$
- 2. Find the maximum directional derivative at the point P(0,1) on the surface $z = f(x,y) = xe^{xy} + y\cos x$

3. Given
$$p(x) = \sum_{k=1}^{\infty} \frac{(x-2)^k}{k^2}$$
, find the interval of convergence for $p'(x)$

4. The volume of the solid with the region bounded by $y = x^2 - 6x + 9$, y = x + 9, and x = 3 as its base and with square cross sections perpendicular to the base and x-axis is shown below. Find the volume of the solid.



- 5. Find the cubic equation $f(x) = ax^3 bx^2 + cx d$ that has a local maximum value of 60 at x = 1 and a local minimum of -4 at x = 3.
- 6. Find the equation of the tangent line to the curve $x \sin 2y = y \cos 2x$ at the point $\left(\frac{\pi}{2}, \frac{\pi}{4}\right)$.
- 7. Evaluate $\int_0^{\frac{3}{2}} \int_{\sqrt{3}x}^{\sqrt{9-x^2}} e^{x^2+y^2} dy dx$
- 8. Find the absolute minimum value of f(x, y) = 6 + 3xy 2x 4y on the region R bounded by the parabola $y = x^2$ and the line y = 4.
- 9. Let f(x) be a function such that f(x) = f(1-x) for all real numbers x. If f is differentiable everywhere, find f'(0).
- 10. Find the length of the curve $x(t) = t \cos t$, $y(t) = t \sin t$ for $0 \le t \le 1$.